Dissociation of an antiviral compound from the internal pocket of human rhinovirus 14 capsid.

نویسندگان

  • Yumin Li
  • Zhigang Zhou
  • Carol Beth Post
چکیده

WIN antiviral compounds bind human rhinovirus, as well as enterovirus and parechovirus, in an internal cavity located within the viral protein capsid. Access to the buried pocket necessitates deviation from the average viral protein structure identified by crystallography. We investigated the dissociation of WIN 52084 from the pocket in human rhinovirus 14 by using an adiabatic, biased molecular dynamics simulation method. Multiple dissociation trajectories are used to characterize the pathway. WIN 52084 exits between the polypeptide chain near the ends of betaC and betaH in a series of steps. Small, transient packing defects in the protein are sufficient for dissociation. A number of torsion-angle transitions of the antiviral compound are involved, which suggests that flexibility in antiviral compounds is important for binding. It is interesting to note that dissociation is associated with an increase in the conformational fluctuations of residues never in direct contact with WIN 52084 over the course of dissociation. These residues are N-terminal residues in the viral proteins VP3 and VP4 and are located in the interior of the capsid near the icosahedral 5-fold axis. The observed changes in dynamics may be relevant to structural changes associated with virion uncoating and its inhibition by antiviral compounds.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural analysis of a series of antiviral agents complexed with human rhinovirus 14.

The binding to human rhinovirus 14 of a series of eight antiviral agents that inhibit picornaviral uncoating after entry into host cells has been characterized crystallographically. All of these bind into the same hydrophobic pocket within the viral protein VP1 beta-barrel structure, although the orientation and position of each compound within the pocket was found to differ. The compounds caus...

متن کامل

A novel basis of capsid stabilization by antiviral compounds.

Picornaviruses are inactivated by a family of hydrophobic drugs that bind at an internal site in the viral capsid and inhibit viral uncoating. A basis for the capsid stabilization previously unrecognized is revealed by molecular dynamics simulations of the antiviral drug WIN52084s bound to a hydrophobic pocket of solvated human rhinovirus 14. Isothermal compressibilities of the complex and huma...

متن کامل

Molecular dynamics simulations of human rhinovirus and an antiviral compound.

The human rhinovirus 14 (HRV14) protomer, with or without the antiviral compound WIN 52084s, was simulated using molecular dynamics and rotational symmetry boundary conditions to model the effect of the entire icosahedral capsid. The protein asymmetrical unit, comprising four capsid proteins (VP1, VP2, VP3, and VP4) and two calcium ions, was solvated both on the exterior and the interior to fil...

متن کامل

Structural studies on human rhinovirus 14 drug-resistant compensation mutants.

Structures have been determined of three human rhinovirus 14 (HRV14) compensation mutants that have resistance to the antiviral capsid binding compounds WIN 52035 and WIN 52084. In addition, the structure of HRV14 is reported, with a site-directed mutation at residue 1219 in VP1. A spontaneous mutation occurs at the same site in one of the compensation mutants. Some of the mutations are on the ...

متن کامل

Analysis of three structurally related antiviral compounds in complex with human rhinovirus 16.

Rhinoviruses are a frequent cause of the common cold. A series of antirhinoviral compounds have been developed that bind into a hydrophobic pocket in the viral capsid, stabilizing the capsid and interfering with cell attachment. The structures of a variety of such compounds, complexed with rhinovirus serotypes 14, 16, 1A, and 3, previously have been examined. Three chemically similar compounds,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 102 21  شماره 

صفحات  -

تاریخ انتشار 2005